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Abstract. We show that, while the classical equations of motion of Belobrov, Zaslavski 
and Tartakovski are rigorously obtained from the thermodynamic limit of the Heisenberg 
equations of motion of the many-atom version of the spin-boson model in suitable states, 
those of Milonni, Ackerhalt and Galbraith are derivable from a quantum Hamiltonian 
only if s > 4, where s is the spin quantum number. Both equations are known to display 
chaotic behaviour for large coupling constants. 

1. Introduction and summary 

The spin-boson model is a very interesting model in physics, with application to a 
wide variety of phenomena in condensed matter physics [ 1-31, macroscopic quantum 
tunnelling [4,5], quantum optics (where the spin represents a two-level atom and the 
boson the electromagnetic field) [6] and, more recently, in dynamical problems related 
to ‘quantum chaos’ ([7] and references therein). In the latter, however, several con- 
troversial problems arise, the most serious one being that the well known level-statistics 
criteria which have been applied with great success to autonomous particle systems 
(see, e.g., [8] for a review) are not applicable to the model [9]. This seems to be due 
to the fact that the spin is ‘too small’ a quantum object to display chaotic behaviour, 
although the applicability of other dynamical criteria of chaos to the model are not 
excluded. Due to the pioneering discovery of Belobrov et a1 [lo] and Milonni et a1 
[ll], that a classical form of the equations of motion displays chaotic behaviour, one 
is tempted to study semiclassical versions of the model from the point of view of 
‘quantum chaos’. This has been done extensively by Graham and Hohnerbach [7] 
(see also [12, 13]), but even the semiclassical limits present problems (see [7, sections 
3c and 3dl ) .  

Our objective is to complement and clarify some aspects of the study of the classical 
limit in the above-mentioned references. 

In section 2 we point out that, in the model with N two-level atoms, certain 
equations of motion, known to exhibit chaotic behaviour for large coupling constant 
[ 101, result if  the thermodynamic limit ( N  + 00) is performed in a certain precise sense 
[14,15]. In a loose sense this means that both the spin and field become classical, 
and the result has been conjectured (and assumed to be true) in [13]. The proof, 
which follows directly from the seminal work of Hepp and Lieb [ 14, 151 shows, however, 
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the crucial role played by a property (2.6) of the initial state, which corresponds 
precisely to the ‘factorisation property’ invoked in [7] and other references in order 
to obtain the equations of motion of [ I O ]  from the Heisenberg equations of motion 
for the spin-boson model. Incidentally, this result is also of some relevance to under- 
standing the problem of ‘quantum chaos’ in the spin-boson model [12,13]. 

Another form of the equations of motion seems to be suggested by a (different) 
semiclassical treatment of the model, using Maxwell’s equations for the classical 
external electric field; they were also shown to display chaotic behaviour for large 
coupling constant [ 1 1 3 .  We show, however, in section 3 that the thus-defined classical 
model derives from the classical limit of a quantum Hamiltonian only if s > i, where 
s is the spin quantum number. Hence, the equations of motion of Milonni et al [ 1 I ]  
are not compatible with quantisation for a two-level atom. Nevertheless, the same 
type of semiclassical treatment using Maxwell’s equations for the ‘displacement vector’ 
D yields the equations of motion of Belobrov et a1 [lo]. It seems therefore that this 
effect may be understood as an additional subtlety of the semiclassical limit related 
to the famous inequivalence of the ‘ d  * E’ and ‘ p  * A’ interactions [ 161, but its main 
interest in this context lies in showing the special role played by spin-$ in this 
semiclassical limit. As shown in section 2, the ‘factorisation property’ is a way of 
obtaining the classical limit which we use without further comment throughout 
section 3. 

2. The limit of large numbers of atoms 

The spin-boson model is described by the Hamiltonian 

H = w a ’ a + w o S , + A S X ( a + a ’ )  (2.1) 

on the tensor product CzS+’O F, where S,, S,, S, are spin-s operators satisfying the 
usual commutation relations [Sl,, S,] = is,, and a, a+ are standard annihilation and 
creation operators with [a, a’] = U acting on Fock space F, and the frequencies U ,  wo 
( A  = 1) and the coupling A are real constants which we take to be positive. 

The Hamiltonian corresponding to (2.1) for N (for simplicity two-level, s =i) 
atoms is 

A 
HN = wa+a + UOS:N)+- S I N ’ ( a  + a’) (2.2) m 

on the Hilbert space XN = XL 0 F, where 
N 

X L = Q C f  
J - 1  

with C; a copy of C 2  describing the j th  atom. The spin-; operators Sx,y,z,J act on 
and stand for 

$00. . .@U@ u ~ . ~ , , , ~  o n @ .  . .on 
where u ~ , ~ , , , ~  are Pauli matrices acting on just the j th  copy @;. Finally 
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The scaling of A by l/m in (2.2) derives from the l / n  ( V =  volume) factor in the 
vector potential A of the electromagnetic field, the last operator term in (2.2) corre- 
sponding to the ' p .  A' interaction [15]. As in [14, 15, 171, we define the 'intensive' 
operators 

which satisfy, by (2.2), the Heisenberg equations of motion: 
x,v = -way, 

) ~ , ~ = w O X N  -AzN(aN+aL) 

zN  = AyN(aN +a';) 

ciN = - i w a N  - i A x N  

ciL=iwaL+iAxN. 

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

(2.3d) 

(2.3e) 

In the limit N + m  the operators x N ,  y,, zN, aN, a'; become 'classical' in that 
their commutators tend to zero: 

and the norms lIxN 11, Ily, /I, and 

(and cyclic permutations of x, y ,  z) 

llzN 11 are uniformly bounded (independently of N ) .  
These limits do not exist, however, in the sense of the norm, and in order to define 
them consider a set of density matrices w N  on XN, such that the limits 

x, y, z = lim w hi ( xN, Y,~, zN ) (2.4) N - x  

a =  lim w N ( a N )  a + =  Iim " ( a ; )  
N + x N-CS 

exist. Let, for notational simplicity, 
5 -  + 

p'h. = XN p', E YN p" = ZN p; = a N  P N = ~ N  
with 

p l ' x  p h J I  p 3 ~  p4" p5 5 a+, 

A sequence of density matrices {w"} is called 2-classical [14, 151 with respect 
to the p N  = { ~ h } j = ~  with value at p = { p 1 } j = 1 ~ ( S 2 ~ R 2 )  where S 2  is the sphere 
x2+y2+z"=$, if 

(2.6) N-m lim i e [ l , 5 ]  sup w " ( ( p ; ~ - p ' ) + ( p ; ~ - p ~ ) ) = o  

where the dagger denotes the adjoint operator. 
By the Schwarz inequality: 

Iim w N ( p L )  = p l  iE[1,5] 
N-x 

and hence the observables pN assume the classical value p at least in mean and 
covariance. We have [15, theorem 1, p 1861 the following. 
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Theorem. If U" is 2-classical for pv  at p E (Sz x R2), then u N  is 2-classical for all 
pN( t )=exp( iHNf)pN exp(-iH,t) at p ( t )  where p ( t ) = ( x ( t ) , y ( t ) ,  z ( t ) ,  a ( t ) ,  a ' ( t ) )  is 
the unique solution of the classical equations 

1 = -way 

i = A y ( a + a + )  

,$ = W ~ X  - A z (  CY + C Y - )  

d. = - iwa - iAx 

a =iwaf+iAx 

(i.e. (2.3) in the 'limit' N + 00) with p ( 0 )  = p 

. +  

(x, y ,  z, a, a+) .  

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

(2.9d) 

(2.9e) 

The above theorem shows that the 'factorised form' of the equations for the spin-boson 
model (2.1) [7] follows rigorously from the large number of atoms limit N + 00 of the 
expectation value of (2.3) in a sequence of 2-classical density matrices. Indeed (2.7) 
and (2.8) correspond precisely to this 'factorisation property', and hence, although the 
final result has been stated in heuristic form in [13], the above shows the crucial role 
played by property (2.6) of the initial state. The scaling A + A/m is consistent with 
the 'intensive' character of a", cy;, which means that the limit N + w  is performed 
with photon energy wa+a proportional to N (i.e. extensive). Hence, in this limit, in 
a sense, both the atoms and the field become 'classical', maintaining the extensive 
character of the interaction. An important class of states satisfying (2.6) is given by 
the product states 

@ " ( A )  = (n", ~ n ~ )  
for any observable A, with 

Y 

a N  = @  (6l+)~+pl-) ,)@V") 
J = 1  

where 6, p E U2 such that 1612+ IpI'= 1; 1 * ) J  is the usual basis of Cf, i.e. 

g Z , J l * ) , = * l * ) J  

and if") E F. Then (2.4) and ( 2 . 5 )  are also satisfied for a proper choice of If"). Two 
standard choices are: If") =la) (the vacuum state in F )  giving a =a+=O, and 
If") = Img) (see [ 171) giving a = 5, a+ = where the bar denotes complex conjugate 
and 15) is the usual [17] (normalised to one) Glauber coherent state. 

If the rotating-wave approximation [ 181 is made, the resulting classical equations 
analogous to (2.9) do not display chaotic behaviour [18]. In this case, it is possible 
to extend the class of states for which the theorem holds as being all ergodic states 
[19], but this result hinges on the existence of an additional conservation law and the 
effective boundedness of the boson operators when restricted to the appropriate 
subspace. Hence, whether the class of allowed states may be similarly extended in the 
present case is an open problem. 

3. A different classical limit 

Introducing in system (2.9) the notation q = ( a  + a + ) / a  a n d p  = i(a+- L Y ) ~  we obtain 
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x = -way ( 3 . 1 ~ )  

y = wox - yqz 

2 = YqY 
q = u p  

(3 . lb )  

( 3 . 1 ~ )  

( 3 . l d )  

p = -wq - yx  ( 3 . l e )  

where y = a h .  The last two equations ( 3 . l d )  and ( 3 . l e )  are equivalent to the following 
single second-order equation for q :  

q + w 2 q = - y w x .  (3.21 
These are the equations of Belobrov et a1 [lo] and we now study the link between 
them and those of Milonni et a1 [ l l ]  mentioned in the introduction (see also [20]). 

It is clear that one obtains exactly equations (3.1) from the Hamiltonian (2.1) 
(written in terms of the operators $ =  ( a + a + ) / f i  and i = i ( u + - u ) / f i )  by taking 
expectation values ( ) of the Heisenberg equations, assuming that the expectation 
values for products factorise and identifying x = (&), y = (S,), z = (&), q = ($) and 
p=(pI) .  We point out also that another approach consists in considering (3 .1 )  as 
classical Hamiltonian equations. This is possible by performing the following change 
of variables: 

x (  Q, P )  = sin e P + cos e ( a  - P’)”‘ cos 0 
y ( ~ ,  ~ ) = ( a - ~ ~ j ” ~ s i n ~  (3.3) 
z (  Q, P )  = cas e P - sin e (a - p2)l12 COS 0 

where 8 is a fixed arbitrary angle and 0 s  Q S  2 ~ ,  -is P 6 : .  Define now the 
Hamiltonian 

H ( q , p ;  0, p ) = h J ( q 2 + P 2 ) + Y q x ( Q ,  P)+woz(Q,  P )  
with (q ,  p )  and (0, P )  as pairs of conjugated variables. Writing now the canonical 
equations q = aH/ap, p = -aH/aq, Q =aH/aP,  P = -aH/aQ we obtain (3.1) by com- 
puting 1, j and z from them and (3.3). As remarked in the introduction, a set of 
equations different from (3.1) is obtained if the classical external electric field is 
assumed to satisfy Maxwell’s equation 

(3.4) 
Y .. q + w2q = - x 
0 

instead of (3.2). With equations (3 . la ,  b, c )  remaining unchanged, this is the model 
of Milonni et a1 [ 111. Remarking that (3.4) is equivalent to 

p = -wq 

our first result is that the system described by these last two equations and (3.la,  b, c )  
is Hamiltonian. Indeed, using again the transformation (3.3) as above, we consider 
the classical Hamiltonian 

(3.6) H’(q’ ,p’;  Q, P ) = ; ~ ( p ’ * + q ’ ~ ) +  yq’x(Q, P)+-x*(Q,  Y 2  P ) + w o z ( Q ,  P ) .  2w 
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It is easy to see that the equations 

x = -woy 

Y 2  y = wox - yqlz -- xz 
w 

Y L  z = yq'y f- xy 
0 

(3.7) 

4' = 

P'= -q'- yx 

follow directly from (3.6) as canonical equations q '=aH'/ap' ,  p'=  -aH'/aq', Q = 
aH'/aP, P = -aH'/aQ. Writing now q' = q - y w - l x  and p' = p one obtains exactly 
(3.la, b, c) and (3.5). 

Our second result answers the following question: is it possible to write down a 
quantum Hamiltonian depending on the 4, $ operators and the spin-f operators S,, 
S,, S; yielding equations (3.la, b, c) and (3.5) upon taking expectation values ( ) of 
the Heisenberg equations and assuming that the expectation values for products 
factorise? 

The most general Hamiltonian for this case can be written as 

H = ho($, 4)+h*($,  4)SX+h2($, 4 P y + h 3 ( $ ,  a s ,  (3.8) 

where h,( 6, i), p = 0, . . . ,3 ,  are general functions of the operators $ and $. 
The Heisenberg equations for the spin operators can be easily computed: 

3, = i[H, % I =  h2($, as2 - 4)S, 

S, = i[H, S,I = -h($, 4)S, + M$, ;ISx 

S ,  = i[H, s,I = h,($, O)S, - h2($, W,. 
(3.9) 

Having in mind the identification x = (S,), y SE (S,), z = ( S : ) ,  q = (4) and p = ($), we 
impose that 

s, = - WOS, 

S, = wos, - y4S2 
S,  = Y4S.V. 

From this and (3.9), it follows that h,($, 4) = y4, h2($, 4) = 0 and h3($,  4) = wo are 
uniquely determined. Then the two remaining Heisenberg equations are 

$ = i[H, $1 = i[ho($, 4,, 61 - YS,  

4 = i[H, 41 = i [ h d t ,  a, 41. 
Thus, we see that it is not possible to satisfy the last two required equations, namely 
$ = - w t  and $ = w$ - ywow- ISv ,  except for the trivial case y = 0. In conclusion we 
may say that, in the special case of spin-; (two-level atom), the equations of Milonni 
et al may not be derived from a quantum Hamiltonian as mentioned in the introduction. 
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Remark. Equation (3.4) may also be replaced by q = wp and 

instead of (3.5). The same reasoning as above applies and we arrive at the same 
conclusions for this case. 

Finally we point out that our last conclusion is indeed inherent to spin-f. This is 
explicitly seen in the form (3.8). As mentioned in the introduction, our final result is 
that the Milonni et a1 equations may be derived from a quantum Hamiltonian for any 
spin quantum number s > i .  This is seen by quantising the Hamiltonian (3.6) (with 
[g', 8'3 = i)  in order to get 

Jq' = i w (  i ' 2 +  $ 2 )  + y q s ,  +- Y L  s', + wos,. 
2w 

For s = 4 we have S', = 1/4; then the term involving S: in H is, of course, irrelevant 
and the Hamiltonian is equivalent to (2.1). On the other hand, for s > this term is 
non-trivial and provides an additional contribution to the Heisenberg equations, 
allowing us to obtain (3.7) (considering again expectation values and factorising 
expectation values for products). 
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